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We propose a generalization of the random matrix theory following the basic prescription of the recently
suggested concept of superstatistics. Spectral characteristics of systems with mixed regular-chaotic dynamics
are expressed as weighted averages of the corresponding quantities in the standard theory assuming that the
mean level spacing itself is a stochastic variable. We illustrate the method by calculating the level density, the
nearest-neighbor-spacing distributions, and the two-level correlation functions for systems in transition from
order to chaos. The calculated spacing distribution fits the resonance statistics of random binary networks
obtained in a recent numerical experiment.
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I. INTRODUCTION

Random matrix theory �RMT� provides a suitable frame-
work to describe quantal systems whose classical counterpart
has a chaotic dynamics �1,2�. It models a chaotic system by
an ensemble of random Hamiltonian matrices H that belong
to one of the three universal classes, namely the Gaussian
orthogonal, unitary, and symplectic ensembles �GOE, GUE,
and GSE, respectively�. The theory is based on two main
assumptions: �i� the matrix elements are independent identi-
cally distributed random variables, and �ii� their distribution
is invariant under unitary transformations. These lead to a
Gaussian probability density distribution for the matrix ele-
ments, P�H��exp�−� Tr�H†H��. With these assumptions,
RMT presents a satisfactory description for numerous cha-
otic systems. On the other hand, there are elaborate theoret-
ical arguments by Berry and Tabor �3�, which are supported
by several numerical calculations, that the nearest-neighbor-
spacing �NNS� distribution of classically integrable systems
should have a Poisson distribution exp�−s�, although excep-
tions exist.

For most systems, however, the phase space is partitioned
into regular and chaotic domains. These systems are known
as mixed systems. Attempts to generalize RMT to describe
such mixed systems are numerous; for a review please see
�4�. Most of these attempts are based on constructing en-
sembles of random matrices whose elements are independent
but not identically distributed. Thus, the resulting expres-
sions are not invariant under base transformation. To the best
of our knowledge, the first work in this direction is due to
Rosenzweig and Porter �5�. They model the Hamiltonian of
the mixed system by a superposition of a diagonal matrix of
random elements having the same variance and a matrix
drawn from a GOE. Therefore, the variances of the diagonal
elements of the total Hamiltonian are different from those of
the off-diagonal ones, unlike the GOE Hamiltonian in which
the variances of diagonal elements are twice those of the
off-diagonal ones. Hussein and Pato �6� used the maximum
entropy principle to construct “deformed” random matrix en-
sembles by imposing different constraints for the diagonal
and off-diagonal elements. This approach has been success-
fully applied to the case of a metal-insulator transition �7�. A

recent review of the deformed ensemble is given in �8�. En-
sembles of band random matrices, whose entries are equal to
zero outside a band of limited width along the principal di-
agonal, have often been used to model mixed systems
�2,9,10�. However, so far in the literature, there is no rigor-
ous statistical description for the transition from integrability
to chaos. The field remains open for new proposals.

The past decade has witnessed a considerable interest de-
voted to the possible generalization of statistical mechanics.
Much work in this direction followed Tsallis paper �11�.
Tsallis introduced a nonextensive entropy, which depends on
a positive parameter q known as the entropic index. The
standard Shannon entropy is recovered for q=1. Applications
of the Tsallis formalism covered a wide class of phenomena;
for a review please see, e.g., �12�. Recently, the formalism
has been applied to include systems with mixed regular-
chaotic dynamics in the framework of RMT �13–18�. This is
done by extremizing Tsallis’ nonextensive entropy, rather
than Shannon’s, but again subject to the same constraints of
normalization and existence of the expectation value of
Tr�H†H�. The latter constraint preserves base invariance. The
first attempt in this direction is probably due to Evans and
Michael �13�. Toscano et al. �14� constructed non-Gaussian
ensemble by minimizing Tsallis’ entropy and obtained ex-
pressions for the level densities and spacing distributions for
mixed systems belonging to the orthogonal-symmetry uni-
versality class. Bertuola et al. �15� expressed the spectral
fluctuation in the subextensive regime in terms of the gap
function, which measures the probability of an eigenvalue-
free segment in the spectrum. A slightly different application
of nonextensive statistical mechanics to RMT is due to No-
bre and Souza �16�. The nearest-neighbor-spacing distribu-
tions obtained in this approach decays as a power law for
large spacings. Such anomalous distributions can hardly be
used to interpolate between nearly regular systems which
have almost exponential NNS distributions and nearly cha-
otic ones whose distributions behave at large spacing as
Gaussians. Moreover, the constraints of normalization and
existence of an expectation value for Tr�H†H� set up an up-
per limit for the entropic index q beyond which the involved
integrals diverge. This restricts the validity of the nonexten-
sive RMT to a limited range near the chaotic phase �17,18�.
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Another extension of statistical mechanics is provided by
the formalism of superstatistics �statistics of a statistics�, re-
cently proposed by Beck and Cohen �19�. Superstatistics
arises as weighted averages of ordinary statistics �the Boltz-
mann factor� due to fluctuations of one or more intensive
parameters �e.g., the inverse temperature�. It includes Tsallis’
nonextensive statistics, for q�1, as a special case in which
the inverse temperature has �2 distributions. With other dis-
tributions of the intensive parameters, one comes to other
more general superstatistics. Generalized entropies, which
are analogous to the Tsallis entropy, can be defined for these
general superstatistics �20–22�. This formalism has been
elaborated and applied successfully to a wide variety of
physical problems, e.g., in �23–30�.

In a previous paper �31�, the concept of superstatistics
was applied to model a mixed system within the framework
of RMT. The joint matrix element distribution was repre-
sented as an average over exp�−� Tr�H†H�� with respect to
the parameter �. An expression for the eigenvalue distribu-
tions was deduced. Explicit analytical results were obtained
for the special case of two-dimensional random matrix en-
sembles. Different choices of parameter distribution, which
had been studied in Beck and Cohen’s paper �19� were con-
sidered. These distributions essentially led to equivalent re-
sults for the level density and NNS distributions. The present
paper is essentially an extension of the superstatistical ap-
proach of Ref. �31� to random matrix ensembles of arbitrary
dimension. The distribution of local mean level densities is
estimated by applying the principle of maximum entropy, as
done by Sattin �27�. In Sec. II we briefly review the super-
statistics concept and introduce the necessary generalization
required to express the characteristics of the spectrum of a
mixed system into an ensemble of chaotic spectra with dif-
ferent local mean level density. The evolution of the eigen-
value distribution during the stochastic transition induced by
increasing the local-density fluctuations is considered in Sec.
III. The corresponding NNS distributions are obtained in
Sec. IV for systems in which the time-reversal symmetry is
conserved or violated. Section V considers the two-level cor-
relation functions. The conclusion of this work is formulated
in Sec. VI.

II. FORMALISM

A. Superstatistics and RMT

To start with, we briefly review the superstatistics concept
as introduced by Beck and Cohen �19�. Consider a nonequi-
librium system with spatiotemporal fluctuations of the in-
verse temperature �. Locally, i.e., in spatial regions �cells�
where � is approximately constant, the system may be de-
scribed by a canonical ensemble in which the distribution
function is given by the Boltzmann factor e−�E, where E is an
effective energy in each cell. In the long-term run, the system
is described by an average over the fluctuating �. The system
is thus characterized by a convolution of two statistics, and
hence the name ”superstatistics.” One statistics is given by
the Boltzmann factor and the other one by the probability
distribution f��� of � in the various cells. One obtains Tsal-
lis’ statistics when � has a �2 distribution, but this is not the

only possible choice. Beck and Cohen give several possible
examples of functions which are possible candidates for
f���. Sattin �27� suggested that, lacking any further informa-
tion, the most probable realization of f��� will be the one
that maximizes the Shannon entropy. Namely, this version of
superstatistics formalism will now be applied to RMT.

Gaussian random-matrix ensembles have several common
features with the canonical ensembles. In RMT, the square of
a matrix element plays the role of energy of a molecule in a
gas. When the matrix elements are statistically identical, one
expects them to become distributed as the Boltzmann ele-
ments. One obtains a Gaussian probability density distribu-
tion of the matrix elements

P�H� � exp�− � Tr�H†H�� �1�

by extremizing the Shannon entropy �1,32� subjected to the
constraints of normalization and existence of the expectation
value of Tr�H†H�. The quantity Tr�H†H� plays the role of the
effective energy of the system, while the role of the inverse
temperature � is played by �, being twice the inverse of the
matrix-element variance.

Our main assumption is that Beck and Cohen’s supersta-
tistics provides a suitable description for systems with mixed
regular-chaotic dynamics. We consider the spectrum of a
mixed system as made up of many smaller cells that are
temporarily in a chaotic phase. Each cell is large enough to
obey the statistical requirements of RMT, but has a different
distribution parameter � associated with it, according to a

probability density f̃���. Consequently, the superstatistical
random-matrix ensemble that describes the mixed system is
a mixture of Gaussian ensembles. Its matrix-element joint
probability density distributions obtained by integrating dis-
tributions of the form in Eq. �1� over all positive values of �

with a statistical weight f̃��� are given by,

P�H� = �
0

�

f̃���
exp�− � Tr�H†H��

Z���
d� , �2�

where Z���=�exp�−� Tr�H†H��d�. Here we use the “B-type
superstatistics” �19�. The distribution in Eq. �2� is isotropic
in the matrix-element space. Relations analogous to Eq. �1�
can also be written for the joint distribution of eigenvalues as
well as any other statistic that is obtained from it by integra-
tion over some of the eigenvalues, such as the nearest-
neighbor-spacing distribution and the level number variance.

The distribution f̃��� has to be normalizable, to have at least
a finite first moment

��� = �
0

�

f̃���� d� , �3�

and then reduces a delta function as the system becomes
fully chaotic.

The random-matrix distribution in Eq. �2� is invariant un-
der base transformation because it depends on the Hamil-
tonian matrix elements through the base-invariant quantity
Tr�H†H�. Factorization into products of individual element
distributions is lost here, unlike in the distribution functions
of the standard RMT and most of its generalizations for
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mixed systems. The matrix elements are no more statistically
independent. This handicaps one in carrying numerical cal-
culations by the random-number generation of ensembles
and forces one to resort to artificial methods as done in �14�.
The base invariance makes the proposed random-matrix for-
malism unsuitable for a description of nearly integrable sys-
tems. These systems are often described by an ensemble of
diagonal matrices in a presumably fixed basis. For this rea-
son we expect the present superstatistical approach to de-
scribe only the final stages of the stochastic transition. The
base invariant theory in the proposed form does not address
the important problem of symmetry breaking in a chaotic
system, where the initial state is modeled by a block diagonal
matrix with m blocks, each of which is a GOE �4�. This
problem is well described using deformed random-matrix en-
sembles as in �6� or phenomenologically by considering the
corresponding spectra as superpositions of independent sub-
spectra, each represented by a GOE �33�a.

The physics behind the proposed superstatistical generali-
zation of RMT is the following. The eigenstates of a chaotic
system are extended and cover the whole domain of classi-
cally permitted motion randomly, but uniformly. They over-
lap substantially, as manifested by level repulsion. There are
no preferred eigenstates; the states are statistically equiva-
lent. As a result, the matrix elements of the Hamiltonian in
any basis are independently but identically distributed, which
leads to the Wigner-Dyson statistics. Coming out of the cha-
otic phase, the extended eigenstates become less and less
homogeneous in space. Different eigenstates become local-
ized in different places and the matrix elements that couple
different pairs are no more statistically equal. The matrix
elements will no longer have the same variance; one has to
allow each of them to have its own variance. But this will
dramatically increase the number of parameters of the theory.
The proposed superstatistical approach solves this problem
by treating all of the matrix elements as having a common
variance, not fixed but fluctuating.

B. Eigenvalue distribution

The matrix-element distribution is not directly useful in
obtaining numerical results concerning energy-level statistics
such as the nearest-neighbor-spacing distribution, the two-
point correlation function, the spectral rigidity, and the level-
number variance. These quantities are presumably obtainable
from the eigenvalue distribution. From �1�, it is a simple
matter to set up the eigenvalue distribution of a Gaussian
ensemble. With H=U−1EU, where U is the global unitary
group, we introduce the elements of the diagonal matrix of
eigenvalues E=diag�E1 , . . . ,EN� of the eigenvalues and the
independent elements of U as new variables. Then the vol-
ume element �4� has the form

dH = 	�N�E�	�dE d	�U� , �4�

where �N�E�=
n
m�En−Em� is the Vandermonde determi-
nant and d	�U� the invariant Haar measure of the unitary
group �1,4�. Here �=1, 2, and 4 for GOE, GUE and GSE,
respectively. The probability density P��H� is invariant un-
der arbitrary rotations in the matrix space. Integrating over U

yields the joint probability density of eigenvalues in the form

P��E1, . . . ,EN� = �
0

�

f���P�
�G���,E1, . . . ,EN�d� , �5�

where P�
�G��� ,E1 , . . . ,EN� is the eigenvalue distribution of

the corresponding Gaussian ensemble, which is given by

P�
�G���,E1, . . . ,EN� = C�	�N�E�	� exp�− ��

i=1

N

Ei
2
 , �6�

where C� is a normalization constant. Similar relations can
be obtained for any statistic ���E1 , . . . ,Ek�, with k�N, that
can be obtained from P��E1 , . . . ,EN� by integration over the
eigenvalues Ek+1 , . . . ,EN.

In practice, one has a spectrum consisting of a series of
levels �Ei�, and is interested in their fluctuation properties. In
order to bypass the effect of the level density variation, one
introduces the so-called “unfolded spectrum” �
i�, where 
i

=Ei /D and D is the local mean level spacing. Thus, the mean
level density of the unfolded spectrum is unity. On the other
hand, the energy scale for a Gaussian random matrix en-
semble is defined by the parameter �. The mean level spac-
ing may be expressed as

D =
c

��
, �7�

where c is a constant depending on the size of the ensemble.
Therefore, although the parameter � is the basic parameter of
RMT, it is more convenient for practical purposes to consider
the local mean spacing D itself instead of � as the fluctuating
variable for which superstatistics has to be established.

The new framework of RMT provided by superstatistics
should now be clear. The local mean spacing D is no longer
a fixed parameter but it is a stochastic variable with probabil-
ity distribution f�D�. Instead, the the observed mean level
spacing is just its expectation value. The fluctuation of the
local mean spacing is due to the correlation of the matrix
elements which disappears for chaotic systems. In the ab-
sence of these fluctuations, f�D�=��D−1� and we obtain the
standard RMT. Within the superstatistics framework, we can
express any statistic ��E� of a mixed system that can, in
principle, be obtained from the joint eigenvalue distribution
by integration over some of the eigenvalues, in terms of the
corresponding statistic ��G��E ,D� for a Gaussian random en-
semble. The superstatistical generalization is given by

��E� = �
0

�

f�D���G��E,D�dD . �8�

The remaining task of superstatistics is the computation of
the distribution f�D�.

C. Evaluation of the local-mean-spacing distribution

Following Sattin �27�, we use the principle of maximum
entropy to evaluate the distribution f�D�. Lacking detailed
information about the mechanism causing the deviation from
the prediction of RMT, the most probable realization of f�D�
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will be the one that extremizes the Shannon entropy

S = − �
0

�

f�D�ln f�D�dD �9�

with the following constraints:
Constraint 1. The major parameter of RMT is � defined in

Eq. �1�. Superstatistics was introduced in Eq. �2� by allowing
� to fluctuate around a fixed mean value ���. This implies, in
light of Eq. �7�, the existence of the mean inverse square of
D,

�D−2� = �
0

�

f�D�
1

D2dD . �10�

Constraint 2. The fluctuation properties are usually de-
fined for unfolded spectra, which have a unit mean level
spacing. We thus require

�
0

�

f�D�D dD = 1. �11�

Therefore, the most probable f�D� extremizes the func-
tional

F = − �
0

�

f�D�ln f�D�dD − �1�
0

�

f�D�D dD

− �2�
0

�

f�D�
1

D2dD , �12�

where �1 and �2 are Lagrange multipliers. As a result, we
obtain

f�D� = C exp�− ��2D

D0
+

D0
2

D2�
 , �13�

where � and D0 are parameters, which can be expressed in
terms of the Lagrange multipliers �1 and �2, and C is a
normalization constant. We determine D0 and C by using
Eqs. �10� and �11� as

D0 = �
G03

30��3	0, 1
2 ,1�

G03
30��3	0,1, 3

2� , �14�

and

C =
2���

D0G03
30��3	0, 1

2 ,1� . �15�

Here G03
30�x 	b1 ,b2 ,b2� is a Meijer’s G function defined in the

Appendix.

III. LEVEL DENSITY

The density of states can be obtained from the joint eigen-
value distribution directly by integration

��E� = N� ¯� P��E,E2, . . . ,EN�dE2, . . . dEN. �16�

For a Gaussian ensemble, simple arguments �1,35� lead to
Wigner’s semicircle law

�GE�E,D� = � 2N

�R0
2
�R0

2 − E2, for 	E	 � R0

0, for 	E	 
 R0

	 , �17�

where D is the mean level spacing, while the prefactor is
chosen so that �GE�E� satisfies the normalization condition

�
−�

�

�GE�E�dE = N . �18�

We determine the parameter R0 by requiring that the mean
level density is 1 /D so that

1

N
�

−�

�

��GE�E��2dE =
1

D
. �19�

This condition yields

R0 =
16N

3�2 D . �20�

Substituting �17� into �8� we obtain the following expression
for the level density of the superstatistical ensemble:

�SE�E,�� = �
0

3�2	E	/�16N�
f�D,���GE�E,D�dD . �21�

We could not solve this integral analytically. We evaluated it
numerically for different values of �. The results of calcula-
tion are shown in Fig. 1. The figure shows that the level
density is symmetric with respect to E=0 for all values of �
and has a pronounced peak at the origin. However, the be-
havior of the level density for finite � is quite distinct from
the semicircular law. It has a long tail whose shape and decay
rate both depend on the choice of the parameter distribution
f�D�. This behavior is similar to that of the level density of
mixed system modeled by a deformed random matrix en-
semble �34�.

IV. NEAREST-NEIGHBOR-SPACING DISTRIBUTION

The NNS distribution is probably the most popular char-
acteristic used in the analysis of level statistics. In principle,

FIG. 1. �Color online� Level density for superstatistical orthogo-
nal ensembles with parameters �=0.2, 1, and � �the GOE limit�.
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it can be calculated once the joint-eigenvalue distribution is
known. The superstatistics generalization of NNS distribu-
tion for an ensemble belonging to a given symmetry class is
obtained by substituting the NNS distribution of the corre-
sponding Gaussian ensemble PGE�s ,D� for ��G��E ,D� in �7�
and integrating over the local mean level spacing D

PSE�s� = �
0

�

f�D�PGE�s,D�dD . �22�

Until now, no analytical expression for the NNS distribution
could be derived from RMT. What we know is that this dis-
tribution is very well approximated by the Wigner surmise
�1�. We shall obtain superstatistics for NNS distribution for
systems with orthogonal and unitary symmetries by assum-
ing that the corresponding Gaussian ensembles have Wigner
distributions for the nearest-neighbor spacings.

Equation �22� yields the following relation between the
second moment �D2� of the local-spacing distribution f�D�
and the second moment �s2� of the spacing distribution
PSE�s�:

�D2� =
�s2�

�s2�GE
, �23�

where �s2�GE is the mean square spacing for the correspond-
ing Gaussian ensemble. For the distribution in Eq. �13�, one
obtains

�D2� =
G03

30��3	0, 1
2 ,1�G03

30��3	0, 3
2 ,2�

�G03
30��3	0,1, 3

2��2 . �24�

Using the asymptotic behavior of the G function, we find that
�D2�→1 as �→�, while �D2�=2 �as for the Poisson distri-
bution� when �=0. For practical purposes, the expression in
Eq. �24� can be approximated with sufficient accuracy by
�D2��1+1/ �1+4.121��. Thus, given an experimental or
numerical-experimental NNS distibution, one can evaluate
the quantity �s2� and estimate the corresponding value of the
parameter � by means of the following approximate relation:

� � 0.243
�s2�

�s2� − �s2�GE
. �25�

A. Orthogonal ensembles

Systems with spin-rotation and time-reversal invariance
belong to the orthogonal symmetry class of RMT. Chaotic
systems of this class are modeled by GOE for which NNS is
well approximated by the Wigner surmise

PGOE�s,D� =
�

2D2s exp�−
�

4D2s2� . �26�

We now apply superstatistics to derive the corresponding
NNS distribution assuming that the local-mean-spacing dis-
tribution f�D� is given by Eq. �13�. Substituting �26� into
�22�, we obtain

PSOE�s,�� =
��2

2D0
2G03

30��3	0, 1
2 ,1�sG03

30��3 +
��2

4D0
2 s2	−

1

2
,0,0� ,

�27�

where D0 is given by �14�, while the subscript SOE stands
for superstatistical orthogonal ensemble.

Because of the difficulties of calculating G0,3
3,0�z 	b1 ,b2 ,b3�

at large values of z, we use �say for z
100� the large z
asymptotic formula given in the Appendix to obtain

PSOE�s,�� �
�

2
s

exp�− 3���3 1 +
�s2

4�
− 1�


�1 +
�s2

4�

, �28�

which clearly tends to the Wigner surmise for the GOE as �
approaches infinity. This formula provides a reasonable ap-
proximation for PSOE�s ,�� at sufficiently large values of s
for all values of ��0. In this respect, the asymptotic behav-
ior of the superstatistical NNS distribution is given by

PSOE�s,�� � C1 exp�− C2s2/3� , �29�

where C1,2 are constants, unlike that of the NNS distribution
obtained by Tsallis’ nonextensive statistics �14�, which as-
ymptotically decays according to a power law.

Figure 2 shows the evolution of PSOE�s ,�� from a Wigner
form towards a Poissonian shape as � decreases from � to 0.
This distribution behaves similarly but not quite exactly as
any member of the large family of distributions. One of these
is Brody’s distribution �36�, which is given by

PBrody�s,�� = a�s� exp�− a�s�+1/�� + 1��, a�

=
1

� + 1
��+1� 1

� + 1
� . �30�

This distribution is very popular, but essentially lacks a the-
oretical foundation. It has been frequently used in the analy-
sis of experiments and numerical experiments. The evolution
of the Brody distribution during the stochastic transition is
shown also in Fig. 2. The Brody distribution coincides with

FIG. 2. �Color online� Evolution of NNS distributions obtained
by the superstatistics method for systems undergoing a transition
from the GOE statistics to the Poissonian, compared with the Bro-
dy’s distributions.
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the Wigner distribution if �=1 and with Poisson’s if �=0.
On the other hand, the superstatistical distribution at �=0 is
slightly different, especially near the origin. For example,
one can use the small-argument expression of Mejer’s G
function to show that lim�→0,s→0 PSOE�s ,��=� /2. In the
midway of the stochastic transition, the agreement between
the two distributions is only qualitative. At small s, the su-
perstatistical distribution increases linearly with s while the
increase of the Brody distribution is faster. The large s be-
havior is different as follows from Eqs. �29� and �30�. The
difference between the two distributions decreases as they
approach the terminal point in the transition to chaos where
they both coincide with the Wigner distribution.

The superstatistical NNS distribution for systems in the
midway of a stochastic transition weakly depends on the
choice of the parameter distribution. To show this, we con-
sider other two spacing distributions, which have previously
been obtained using other superstatistics �17,18,31�. The first
is derived from the uniform distribution, considered in the
paper of Beck and Cohen �19�. The second is obtained for a
�2 distribution of the parameter �, which is known to pro-
duce Tsallis’ nonextensive theory. In the latter case, we
qualify the NNS distribution by the parameter m=2/q−1
−d−2, where q is Tsallis’ entropic index and d is the dimen-
sion of the Hamiltonian random matrix. This behavior is
quite different from the conventional NNS which are fre-
quently used in the analysis of experiments and nuclear ex-
periments, namely Brody’s and Izrailev’s �37�. The latter dis-
tribution is given by

PIzrailev�s,�� = As� exp�−
�2�

16
s2 −

�

4
�B − ��s� , �31�

where A and B are determined for the conditions of normal-
ization and unit mean spacing. Figure 3 demonstrates the
difference between the superstatistical and conventional dis-
tribution in midway between the ordered and chaotic limits.
The figures compares these distributions with parameters that
produce equal second moments. The second moment of the
Brody distribution is given by

�s2�Brody =

��1 +
2

� + 1
�

�2�1 +
1

� + 1
� . �32�

We take �=0.3, calculate �s2�Brody, and use the corresponding
expressions for the second moment of the other distributions
to find the value of their tuning parameters that makes them
equal to �s2�Brody. The comparison in Fig. 3 clearly shows
that, while the considered three superstatistical distributions
are quite similiar, they considerably differ from Brody’s and
Izrailev’s distributions.

The superstatistical distribution PSOE�s ,�� can still be
useful at least when Brody’s distribution does not fit the data
satisfactorily. As an example, we consider a numerical ex-
periment by Gu et al. �38� on a random binary network.
Impurity bonds are employed to replace the bonds in an oth-
erwise homogeneous network. The authors of Ref. �38� nu-
merically calculated more than 700 resonances for each
sample. For each impurity concentration p, they considered
1000 samples with totally more than 700 000 levels com-
puted. Their results for four values of concentration p are
compared with both the Brody and superstatistical distribu-
tion in Fig. 4. The high statistical significance of the data
allows us to assume the advantage of the superstatistical dis-
tribution for describing the results of this experiment.

B. Unitary ensembles

Now we calculate the superstatistical NNS distribution for
a mixed system without time-reversal symmetry. Chaotic
systems belonging to this class are modeled by GUE for
which the Wigner surmise reads

PGUE�s,D� =
32

�2D3s exp�−
4

�D2s2� . �33�

We again assume that the local-mean-spacing distribution
f�D� is given by Eq. �13�. The superstatistics generalization
of this distribution is obtained by substituting �33� into �22�,

PSUE�s,�� =
32�3

�2D0
3G03

30��3	0, 1
2 ,1�s2G03

30

���3 +
4�2

�D0
2s2	− 1,−

1

2
,0� , �34�

where D0 is given by �14�. At large values of z, we use the
large z asymptotic formula for the G function to obtain

PSUE�s,�� �
32

�2s2

exp�− 3���3 1 +
4s2

��
− 1�


�1 +
4s2

��
�5/6 , �35�

which clearly tends to the Wigner surmise for the GUE as �
approaches infinity as in the case of a GOE.

Figure 5 shows the behavior of PSUE�s ,�� for different
values of � ranging from 0 to � �the GUE�. As in the case of
the orthogonal universality, the superstatistical distribution is

FIG. 3. �Color online� Comparison between the superstatistical
and conventional NNS distributions having equal second moments.
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not exactly Poissonian when �=0. Using the small argument
behavior of Mejer’s G function, one obtains
lim�→0,s→0 PSOE�s ,��=4/�.

V. TWO-LEVEL CORRELATION FUNCTION

The two-level correlation function is especially important
for the statistical analysis of level spectra �4�. It is also di-
rectly related to other important statistical measures, such as
the spectral rigidity �3 and level-number variance �2. These

quantities characterize the long-range spectral correlations
which have little influence on NNS distribution.

The two-level correlation function R2�E1 ,E2� is obtained
from the eigenvalue joint distribution function P�

�G�

��� ,E1 , . . . ,EN� by integrating over all eigenvalues except
two. It is usually broken into connected and disconnected
parts. The disconnected part is a product of two-level densi-
ties. On the unfolded spectra, the corresponding two-level
correlation function can be written as �1,4�.

X2��1,�2� = D2R2�D�1,D�2� . �36�

Here the disconnected part is simply unity and the connected
one, known as the two-level cluster function, depends on the
energy difference r=�1−�2 because of the translation invari-
ance. One thus writes

X2�r� = 1 − Y2�r� . �37�

The absence of all correlation in the spectra in the case of the
Poisson regularity is formally expressed by setting all k-level
cluster functions equal 0, and therefore

X2
Poisson�r� = 1. �38�

We shall here consider the unitary class of the symmetry. For
a GUE, the two-level cluster function is given by

FIG. 4. �Color online� NNS distributions of geometrical resonances in random network, calculated by Gu et al. �38� compared with the
Brody and superstatistical distributions.

FIG. 5. �Color online� NNS distributions obtained by the super-
statistics method for systems undergoing a transition from the GUE
statistics to the Poissonian.
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Y2
GUE�r� = � sin �r

�r
�2

. �39�

The two-level correlation function for mixed systems de-
scribed by the superstatistics formalism is given, using Eqs.
�7� and �26�, by

X2
SUE�r� =

1

�D−2��0

�

f�D�
1

D2X2
GUE� r

D
�dD , �40�

where we divide by �D−2� in order to get the correct
asymptotic behavior of X2�r�→1 as r→�. Unfortunately,
we were not able to evaluate this integral analytically in a
closed form. The results of the numerical calculation of
X2

SUE�r� for �=0.5, 1 and � �the GUE� are given in Fig. 6.

VI. SUMMARY AND CONCLUSION

We have constructed a superstatistical model that allows
us to describe systems with mixed regular-chaotic dynamics
within the framework of RMT. The superstatistics arise out
of a superposition of two statistics, namely one described by
the matrix-element distribution exp�−� Tr�H†H�� and an-
other one by the probability distribution of the characteristic
parameter �. The latter defines the energy scale; it is propor-
tional to the inverse square of the local mean spacing D of
the eigenvalues. The proposed approach is different from the
usual description of mixed systems, which model the dynam-
ics by ensembles of deformed or banded random matrices.
These approaches depend on the basis in which the matrix
elements are evaluated. The superstatistical expressions de-
pend on Tr�H†H� which is invariant under base transforma-
tion. The model represents the spectrum of a mixed system
as consisting of an ensemble of subspectra to which are as-
sociated different values of the mean level spacing D. The
departure of chaos is thus expressed by introducing correla-
tions between the matrix elements of RMT. Spectral charac-
teristics of mixed systems is obtained by integrating the re-
spective quantities corresponding to chaotic systems over all
values of D. In this way, one is able to obtain entirely new
expressions for the NNS distributions and the two-level cor-

relation functions for mixed systems. These expressions re-
duce to those of RMT in the absence of the fluctuation of the
parameter D, when the parameter distribution is reduced to a
� function. They can be used to reproduce experimental re-
sults for systems undergoing a transition from the statistics
described by RMT towards the Poissonian level statistics,
especially when conventional models fail. This has been il-
lustrated by an analysis of a high-quality numerical experi-
ments on the statistics of resonance spectra of disordered
binary networks.

APPENDIX

For sake of completeness, we give in this appendix the
definition of the Meijer G function as well as some of its
properties, which have been used in the present paper.
Meijer’s G function is defined by

Gp,q
m,n�z	

a1, . . . ,ap

b1, . . . ,bq
�

=
1

2�i
�

L


 j=1

m
��bj + s�
 j=1

n
��1 − aj − s�


 j=m+1

q
��1 − bj − s�
 j=n+1

p
��aj + s�

z−sds ,

�A1�

where 0�n� p and 0�m�q while an empty product is
interpreted as unity. The contour L is a loop beginning and
ending at −� and encircling all the poles of ��bj +s� , j
=1, . . . ,m once in the positive direction but none of the poles
of ��1−aj −s� , j=1, . . . ,n. Various types of contours, exis-
tence conditions, and properties of the G function are given
in �39�. The way by which integrals of the type considered in
this paper are expressed in terms of the G functions are de-
scribed in �40�.

The asymptotic behavior of Meijer’s G function, as 	z	
→�, is given by �41�

Gp,q
m,n�z	

a1, . . . ,ap

b1, . . . ,bq
� �

�2����−1�/2

�1/2 z� exp�− �z1/�� , �A2�

where �=q− p
0, and ��= 1
2 �1−��+� j=1

q bj −� j=1
p aj. In par-

ticular, the G function that appears in this paper

G0,3
3,0�z	b1,b2,b3�

=
1

2�i
�

L

1

��1 − b1 − s���1 − b2 − s���1 − b3 − s�
z−sds ,

�A3�

has the following asymptotic behavior:

G0,3
3,0�z	b1,b2,b3� �

2�

�3
z�b1+b2+b3−1�/3 exp�− 3z1/3� . �A4�

On the other hand, the small z behavior of Meijer’s G
function �42� is given by

FIG. 6. �Color online� Two-level correlation functions obtained
by the superstatistics method for systems undergoing a transition
from the GUE statistics to the Poissonian.
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Gp,q
m,n�z	

a1, . . . an,an+1, . . . ,ap

b1, . . . bm,bm+1, . . . ,bq
�

= �
k=1

m 
 j=1

j�k

m
��bj − bk�
 j=1

n
��1 − aj − bk�


 j=n+1

p
��aj − bk�
 j=m+1

q
��1 − bj − bk�

zbk

��1 +

 j=1

p
�1 − aj − bk�


 j=1

n
�1 − bj − bk�

�− 1�−m−n+pz + ¯
 .

�A5�

Thus, the leading term in the expansion of G0,3
3,0�z 	b1 ,b2 ,b3�

in powers of z is given by

G0,3
3,0�z	b1,b2,b3� � ��b2 − b1���b3 − b1�zb1, �A6�

where b1 is the smallest of bi.
The implementation of Meijer’s G function in Math-

ematica �42� constitutes an additional utility for analytic ma-
nipulations and numerical computations involving this spe-
cial function.
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